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ABSTRACT

This report discusses the positional accuracy obtainable

from the local reduction of the topocentric coordina tes of a

celestial body in the topocentric reference frame. Both a

theoretical and numerical analysis are provided . The method of

dependences, the four constant plate model , and the six

constant plate model are considered . The purely arithinetic

results were obtained via Monte Carlo simulations.
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I. INTRODUCTION

This report discusses the systematic accuracy one can

obtain when reducing the position of one celestial object

(the program object) relative to other celestial objects

(the reference objects). The heart of the problem is to

delineate the number of reference objects needed and

their arrangement with respect to the program object. The

only other investigations in the astronomical literature

appear to be the discussion by Plummer1 for the method of

dependences and the inquiry of Eichhorn and Williams2 for

the plate modeling procedure of classical photographic

astrometry. Although neither of these is especially relevant

to a rea l time reduction procedure , they do form the mathematical

basis for the Precision Local Calibration procedure of the

Ground-based Electro-Optical Deep Space Surveillance system

(GE0DSS). Neither simpler local calibration procedures nor

global calibra tion procedures (such as the one used for the

Anglo—Australian Telescope) will be discussed here. See

Taff and Poirier3 for an investigation of the former in the

t . 
current context.

Historically, the method of dependences used with three

reference objects (stars in fact although experimentation

with galaxies is underway at the Lick Observatory) has

dominated the subject. Some of the reasons for this were

1
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summarized in § IVB of Taff.4 With the advent of automatic

measur ing machines , high speed , large storage , electronic

digita l computers, and the development of the plate overlap

technique ,5 the situation has changed . Astrometers who use

the latter tools prefer the maximum number of reference

objects. More than a dozen per reduction is common. Since

a large fraction of working astrometers still use the older

procedures , a schism exists in the community . This report

is my effort to contribute towards a rapprochement.

One could properly ask, “Why study the problems of

classical photographic astrometry when designing a real time

procedure where no photograph is ever taken, no plate ever

measured , nor standard coordinates ever computed?” Until

and un less the final configuration of the telescope/camera/video

monitor combination is fixed (and thoroughly investigated

with regard to accidental errors, systematic errors, and

their couplings) the simplest, least presumptive local

reduction procedure mimics (formally) the analyses of photographic

astrometry . In addition , I expect to make a contribution to

the astronomical literature complementincc and supplementing

the earlier work)’ 2 Finally , by performing the statistical

analysis correctly (neither Plummer 1 nor Eichhorn and Williams 2

did), by developing analytical predictions of the achievable

accuracy , and by testing this analytical construct via

2



extensive Monte Carlo simulations a more complete grasp of

the problem can be at hand.

Following a brief section on notation, three different

reduction procedures are explored . They are known as the

method of dependences , the four constant plate model, and

the six constant plate model. Numerical computations usidg

both artificial reference objects and the stars of the

Smithsonian Astrophysical Observatory Star Catalogue6 are

then presented for the six constant plate model. I adhere

to the terminology of photographic astrometry but use a

notation that minimizes the typist ’s difficulties. Before

proceeding it is worth remarking that, when applicable,

either global calibration or the simpler local calibration

procedures will always use telescope time more economically

than PLC does and will also produce results of comparable

accuracy.

•1
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II. NOTATION

The constants entering the relationship between the

measured coordinates and the real coordinates are called

plate constants. The letters a—f are used for this purpose.

The corresponding upper case letters symbolize their estimates

obtained by a least squares analysis.

The reference objects lie on a plane and rectangular

Cartesian coordinates are used. Thus (xj~ Y~) denotes the

position of the jth reference object. N is the total number

of reference objects and, except for 1k, all vectors are N—

dimensional and all sums run from 1 to N. Thus,

x =  (x1, x2, ..., xN),

N
~x .  = Z x..

j = 1 3

Fur thermore , the coordinate system is always translated such

that

Ex~ = Zy~ = 0.

Measured quantities are indicated by primes (as in y’).

Upper case x and y denote the position of the program object

and the vector R = (X , Y).

4 
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Finally, the moment of inertia tensor of the reference

objects is symbolized by I (I i represents its inverse) and

S is the area occupied by the reference objects

.5



III. THE METHOD OF DEPENDENCES

When a linear plate model is suff iciently precise to

relate the measured values, x ’, ~~~
‘ , to the true (in the

connotation of real) values, x, ~~~, a quantity called the

dependence was introduced by Schlesinger .7 When using N

reference objects the vector of dependences is defined by

= + [X(~.I~~ - 

~
‘xy~ 

+ Y(~ I,~~ - ~-Ixy~~~’~~tW1 (1)

where i is an N—dimensional unit vector , (X, Y) are the true

coordinates of the program object, and I is the moment of

inertia tensor of the reference objects , viz,

/ I,~ ~~~~
I =1 1= I . (2)

Iyy

The quantity det(I) is the determinant of I. Clearly I is a

non-negative semidefinite array. I can be singular if and

only if the reference objects all lie on a straight line.

This represents a degeneracy not further considered here.

Hence, I is a positive definite array in the sequel.

The whole point of the method of dependences is the

avoidance of the necessity of computing estimates for the

plate constants in (a-f are the plate 
constants)6



0•
x - x ’ = a + bx + c~ , (3a)

1-~~ ’ = d + e x + f ~ . (3b)

To see how this may be accomplished (using the dependences)

~,bserve that the constraints

Ex. 0, Ey~ = 0, (4)

arid the definition of I imply that

D • x = X , D • ~~~~= Y. (5a)

From Eqs. (3) and the fact that [cf. Eqs. (1, 4)]

ED. = 1,
3

it follows that

D • x ’ = X ’ , D • ~~~‘ = Y’. (5b)

Whence, from Eqs. (5),

x = x ’ + D • (x - x ’), (6a)

y = y’ + D • (~ - 
~~~
‘), (6b)

7
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p1
are equivalent to Eqs. (3). If the dependences did not

depend on X or Y the problem would then bc solved . In order

to proceed assume the validity of the linear plate model .

This implies a—f are small quantities. Then, to second-

order ,

D ( X , Y) • (x — x’) = D(X’, Y’) • (x - x ’)

and similarly for the y term. The use of this approximation

in Eqs. (6) renders the computational problem explicit and

a-f are not needed. The true power of this approximation is

revealed when N = 3. Details are in Taff.4 Hence , the

tremendous hold , in a slide rule only era , of the N = 3

version of the method of dependences.

The final factor that established the dominance of this

particular reduction technique lay in the error estimates

for X, Y . In addition to producing essentially unbiased

values for X and Y, the estimate of the variances, viz ,

var (X) = (~X/~x’)
2var (x’) + E (aX/~x~)

2var (x~)

= + D • D), (7a)

var (Y) = a2(1 + D • D), (7b)



r
clinched the argument (a

~ ~
, is the standard deviation of an

individual measurement in the x , y direction).

From Eq. (1),

D • D = 1/N + R • I~~ • R , (7c)

where R = (X , Y) is the two-dimensional position vector of

the program object and I~~ is the inverse of I. Since I is

positive definite so is I~~ . Hence, the minimum variances

for X and Y occur when the program object is placed at the

center of mass of the reference objects and in this case

var(X, Y) = c~~ y (l + 1/N) . (8)

The supporters of the N = 3 method of dependences reduction

technique (see van de Kamp8 for example) now argue that the

increase in accuracy to be obtaiz~~d by using more than three

stars is at most (4/3)1/2 - 1 = 15.5 percent. Moreover , the

relative gain in going from N = 3 to N = 4 is only (16/15)1.1/2 
— i

= 3.3 percent. This argument is false because Eq. (8) only

applies (ignoring the sleight of hand used to derive it) for

N > 3. See ~V below.

Notwithstanding the fact that the result embodied in

Eqs. (7) has been arrived at heuristically , I shall reproduce

9
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it wi th ful l  rigor for the four constant ~1ate model and

approximately for the six constant plate model. Moreover,

its essential predictions are confirmed by the Monte Carlo

simulations described in §VI . Hence, a fur ther discussion

is presented here. By examining Eqs. (7) one concludes that

(for N above the minimum!)

Ci) The optimum position for the program object is at

R = 0,

(ii) When R = 0 the coordinate variances scale linearly

with the measuring variance,

(i i i)  When R = 0 increasing the number of reference

stars beyond the minimum offers little improvement in accuracy

(e.g., it’s 2.1 percent for N = 4 -
~~ N = 5),

(iv) When R = 0 the expected accuracy is independent of

the areal extent of the reference objects ,

(v) When R ~ 0,

var (X , Y) =
~~~~~~ 

~
[l + (1 + kR 2/ S)/N] , (9)

where S is the areal extent of the reference stars and k is

a constant 10 (it depends on the radii of gyration).

Thus, if R ~ 0, one wants the maximum areal extent so that

the full x and y ranges can be used to accurately determine

the plate constants. The derivation of Eq. (9) is postponed

to §IV.

10



F
Iv. THE FOUR CONSTANT PLATE MODEL

In certain situations a similarity transform suffices

to relate the measured coordinates to the true coordinates.

When this is so an orientation angle , 0 , a scale factor , p,

and two zero point constants, c, d, uniquely determine the

model. In particular ,

x - x ’ = p(xcos0 + ~sin0) + c,

— = p(—xsinB + ~cos8) + d,

or

x - x ’ = a x + b ~~+ c ,

- y ’ = -bx + a~ + d.

Note that the plate constants do not have the same meaning

as in Eqs. (3). The least squares solution for the estimators

of a-d is both unique and trivial (since the matrix of the

normal equations is diagonal). From the covariance matrix

the only non—zero terms are = c,
y 

= a necessarily)

var(A) var (B) a2/Tr (I),

var (C) — var(D) =

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

11
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The var iance of X or Y , which are obtained by solving

X - X’ = AX + BY + C,

Y - Y’ = -EX + AY + D,

is given by

var(X , Y) = 02(1 + 1/N + R2/Tr(I)],. (10)

If 1k ~ 0, since Tr(I) = 2det~~
2(I), and

det~~
2(I) = ~~~ = x • x = K

2
N SN,

where ~ is the radius of gyration, Eq. (10) can be transformed

into

var (X, Y) = ~
2ii + (1 + kR2/S)/N1 . (11)

(For a uniform distribution of reference objects k = 12

while for a distribution on the perimeter of a square with

sides of length ~1/2, k = 4.) Hence, Eqs. (7) are rigorously

derived . It is also important to note that the only assumption

made is that the noise associated with a measurement has a

constant mean (not necessarily zero) and is uncorrelated.

12
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The four constant model is so special we cannot expect

it to apply to the problem of GEODSS. I considered here

because its symmetry allows a complete solution to the

problem which can be used as a guide in the more complex

case.

3.3
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V. THE SIX CONSTANT PLATE MODEL

The plate model is given in Eqs. (3) and represents an

affine transformation. From the normal equations we can

compute the covariance matrix, and only

var (A , D) = a~ y/Ns

var(B , E) = a~ ~I~~/det(I)~

var (C, F) = a~ ~
I
~~

/det(I)i

cov(B, C) =

cov(E, F) = -a
~
I
~~
/det(I)

~

are non-zero. The least squares solution provides unbiased

estimators for X and Y. The unbiased estimators for 0,~, y
are

s = Cx , y residual)/ (N — 3) ,  N > 3.x, y

- 
- Clearly, if N = 3 there is no statistical problem at all and

both the x and y residuals vanish. This is why Eq. (8)

cannot be used to deduce the relative precision of the N =

3, N > 3 cases.

14
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The coordinates of the program object are obtained by

inverting

X - X ’  AX + BY + C, (12a)

Y - Y’ = DX + EY + F , ( 12b)

which has a determinant of

d = (1 - B) (1 - F) - EC.

The variances of X and Y are given by

var(X) = (a~~(]. — F)2 + a~C
2] (1 + 1/N + 1k • I i 

• R]/d 2 , (l 3a)

‘~ar(Y) = [a~~(l — B)
2 
+ a~ E2](l  + 1/N + H • I~~~• R]/d

2
. (13b)

The four constant plate model has sufficient symmetry that

the terms appearing in Eqs. (13) cancelled in Eq. (10).

Further rigorous progress appears to be impossible.

However , after averaging var (X, Y) over the noise one is led

to

<var (X, Y)> = a~ ~ [l + 1/N + R • I~~~s R], (]3c)

exactly as before. Also, as in § XV , the R • I~~ • R term

can be shown to be proportional to kR2/NS.

15
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VI. MONTE CARLO SIMULATIONS

For the six constant model Eqs. (13) provides all of

the information we can obtain concerning the expected accuracy

of the results. This is true if and only if N > 3. Hence

the need of a simula tion to elucidate the difference between

the N = 3 results and the N > 3 results. Moreover, if we

assume a uni form distribution of reference objects is optima l

[a result implicit in Eqs. (13c)], the Monte Carlo technique

will truly mimic the real problem. However, neither the

distribution of stars on the celestial sphere nor the distribution

of stars in catalogues is uniform. Thus, the SAOC was also

used to provide the positions of the reference objects.

A. Simulations Using The Uniform Distribution

To further explore the implications of Eqs. (13) a

total of 360 different simulations predicated on three

different program object locations relative to the reference

objects were performed. Each individual result represents

the average of 10,000 trials. Hence, the expected accuracy

is one percent. The values of N used were 3(1)8, in each

case; = 0y = a and a was l~25, 2~ 50, 5~00, or l0~00;

and in each case L
~ 

= L~ = L = S1~
’2 with L = 0?25, 0~ 5O ,

i?oo, 2?00, or 4?0O. The smaller two values of L bracket

the density of the SAOC , the largest two values of L correspond

to the density of the FK5( FK4 plus the FK4 Sup), and the

16
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intermediate value of L is appropriate for the AGK2A plus

the SRS . The largest value of a reflects the current configuration

of the Experimental Test Site of the GEODSS system. The

smallest value of a represents that expected in the deployed

GEODSS system. The intermediate values refer to making

improvements in the telescope, or the telescope and video

monitor. -

The three di fferent program object locations will

be referred to as the R = 0, the min (R), and the max (R)

situations:

Ci )  R = 0; the program object was always placed exactly

at the center of ma ss of the N reference stars ,

(ii) min (R); N + 1 positIons were generated and the one

closest to the origin was chosen to be the program object

(the real case),

(iii) max(R); the program object was placed somewhere

within the smallest rectangle containing all of the reference

objects (primarily to explore the kR2/NS term).

Since it is impossible to theoretically construct

error estimates for x and Y in the N — 3 case, all of the

analysis used the absolute deviations, viz,

— tx — x~ J , 
~ 

Y — y * ( ( 14a)

17
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= + ~~~~ , (l4b)

wh:re (X, Y) is the true position of the program object and

CX , Y ) is the position obtained by inverting the model

Ecf . Eqs. (12)1. 
~~~~~ y should have the same functional

dependence on a
~ , ~

, , N, and kR2/NS as var (X, Y) do. The

results are too voluminous to reproduce here. Tables 1, 2,

and 3 summarize some of them. As the x and y dimensions

were treated similarly the properly weighted average of

and only is reported (in the &~ ~/a columns).

A careful perusal of these tables verifies the

predictions on page 10. Moreover, while increasing N beyond

five is not warranted , the increase from N = 3 to N = 4

results in average improvement of 2.6 in the position. This

of cour se, is still not the entire story. For as much as I

know both CX , Y) and CX , Y )  the higher moments of 
~~~~, ~~

and ~ can be computed . The ratios of the N = 1 to N = 4, 5

and the N = 4 to N = 5 standard deviations for the min (R)

case CL = l~~00) are given in Table 4. The enormous reduction

in going from N = 3 to N = 4 precludes any thoughts of using

only three ref erence objects and the six plate constant

model.

B. Simulations Using The SAOC

To obtain a much more accurate feel for the quality

of the results when the reference object distribution is

18
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TABLE 1

R = 0 RESULTS
~ /0 11/0x,y L 0~25N/ a 1’.’25 2’.’SO 5’.’OO l0~00 N/ a 1’.’25 2’.’50 5’.’OO l0’.’OO

3 0.947 0.971 1.03 1.12 3 1.49 1.52 1.70 1.76
4 0.896 0.897 0.898 0.902 4 1.41 1.41 1.41 1.42
5 0.874 0.874 0.874 0.875 5 1.37 1.37 1.37 1.37
6 0.860 0.860 0.860 0.861 6 1.35 1.35 1.35 135
7 0.861 0.861 0.861 0.861 7 1.35 1.35 1.35 1.35
8 0.851 0.851 0.851 0.851 8 1.33 1.33 1.33 1.33

L — 0 ~ 50
N/ a 1’ 25 2’.’SO 5’.’OO 10’.’OO N/ a 1’.’25 2’.’50 5’.’OO 10’.’OO
3 0.937 0.947 0.971 1.03 3 1.47 1.49 1.52 1.70
4 0.895 0.896 0.897 0.898 4 1.41 1.41 1.41 1.41
5 0.874 0 .874 0.877 0.874 5 1.37 1.37 1.37 1.37
6 0.860 0.860 0.860 0.860 6 1.35 1.35 1.35 1.35
7 0.861 0.861 0.861 0.861 7 1.35 1.35 1.35 1.35
8 0.851 0.851 0.851 0.851 8 1.33 1.33 1.33 1.33

L = 1~ 00
N/a 1’.’25 2’.’SO 5’.’OO l0~00 N/a 1’.’25 2’.’50 5’.’OO lO’.’OO

3 0.944 0.937 0.547 0.971 3 1.49 1.47 1.49 1.52
4 0.895 0.895 0.896 0.897 4 1.41 1.41 1.41 1.41
5 0.874 0.874 0.874 0.874 5 1.37 1.37 1.37 1.37
6 0.860 0.860 0.860 0.860 6 1.35 1.35 1.35 1.35
7 0.861 0.861 0.861 0.861 7 1.35 1.35 1.35 1.35
8 0.851 0.851 0.851 0.851 8 1.33 1.33 1.33 1.33

L — 2~ 00
N/ c 1’.’25 2~ 50 5’.’OO 10’.’OO N/a 1’.’25 2’.’SO 5’.’OO 1O’.’OO

3 0.930 0.944 0.937 0.947 3 1.46 1.49 1.47 1.49
4 0.895 0.895 0.895 0.896 4 1.41 1.41 1.41 1.41
5 0.874 0.874 0.874 0.874 5 1.37 1.37 1.37 1.37
6 0.860 0.860 0.860 0.860 6 1.35 1.35 1.35 1.35
7 0.861 0.861 0.861 0.861 7 1.35 1.35 1.35 1.35
8 0.851 0.851 0.851 0.851 8 1.33 1.33 1.33 1.33

L — 4 ? O O
N/a 1’.’25 2’.’50 5’.’OO l0’.’OO N/a 1’.’25 2’ SO 5’.’OO 10’.’OO

3 0.930 0.929 0.944 0.937 3 1.46 1.46 1.49 1.47
4 0.895 0.895 0.895 0.895 4 1.41 1.41 1.41 1.41
5 0.874 0.874 0.874 0.874 5 1.37 1.37 1.37 1.37
6 0.860 0.860 0.860 0.860 6 1.35 1.35 1.35 1.35
7 0.861 0.861 0.861 0.861 7 1.35 1.35 1.35 1.35
8 0.851 0.851 0.851 0.851 8 1.33 1.33 1.33 1.33

19
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TABLE 2

M I N ( R )  RESULTS
11 /a A/ax,y L = 0~ 25

N/a 1I.125 2’.’50 5’.’OO 10’.’OO N/a 1’.’25 2’.’SO 5’.’OO 10’.’OO
3 3.09 2.17 1.95 2.17 3 5.01 3.54 3.10 3.60
4 1.08 1.08 1.08 1.09 4 1.69 1.70 1.71 1.73
5 0 .947 0 .947 0.947 0 .948 5 1.49 1.49 1.49 1.49
6 0.908 0.908 0.908 0.908 6 1.43 1.43 1.43 1.43
7 0.885 0.884 0.884 0.885 7 1.39 1.39 1.39 1.39
8 0.882 0.882 0.882 0.882 8 1.38 1.38 1.38 1.38

L = 0~50
N/a 1’.’25 2~ 50 5’.’OO 10’!OO N/a 1’!25 2’.’50 5’.’OO 10’.’OO

3 2.29 3.09 2.17 1.95 3 3.82 5.01 3.54 3.10
4 1.08 1.08 1.08 1.08 4 1.69 1.69 1.70 1.71
5 0.947 0 .947 0.947 0 .947 5 1.49 1.49 1.49 1.49
6 0.908 0.908 0.908 0.908 6 1.43 1.43 1.43 1.43
7 0.885 0.885 0.884 0.884 7 1.39 1.39 1.39 1.39
8 0.882 0.882 0.882 0.882 8 1.38 1.38 1.38 1.38

L = 1?00
N/c 1’ 25 2’.’SO 5’.’OO 10’ OO N/a 1’.’25 2’ 50 5’.’OO 10’.’OO

3 2.07 2.29 3.09 2. 17 3 3.32 3.82 5.01 3.54
4 1.08 1.08 1.08 1.08 4 1.69 1.69 1.69 1.70
5 0.947 0.947 0.947 0.947 5 1.49 1.49 1.49 1.49
6 0.908 0.908 0.908 0.908 6 1.43 1.43 1.43 1.43
7 0.885 0.885 0.884 0.884 7 1.39 1.39 1.39 1.39
8 0.882 0.882 0.882 0.882 8 1.38 1.38 1.38 1.3~

L = 2~ 00
N/a 1’.’25 2~ 50 5’.’OO 10’.’OO N/a 1’!25 2’.’SO 5~ 00 10’.’OO

3 2.14 2.07 2.29 3.09 3.44 3.32 3.82 5.01
4 1.08 1.08 1.08 1.08 4 1.69 1.69 1.69 1.69
5 0.947 0.947 0.947 0 .947 5 1.49 1.49 1.49 1.49
6 0.908 0.908 0.908 0.908 6 1.43 1.43 1.43 1.43
7 0.885 0.885 0.884 0.884 7 1.39 1.39 1.39 1.39
8 0.882 0.882 0.882 0.882 8 1.38 1.38 1.38 1.38

L = 4~ 00
N/cl V.’25 2 ’.’SO 5’.’OO 10’.’OO N/cl 1’.’25 2’.’50 5~00 10’.’OO
3 9.16 2.14 2.07 2.29 3 16.2 3.44 3.32 3.82
4 1.08 1.08 1.08 1.08 4 1.69 1.69 1.69 1.69
5 0.947 0.947 0.947 0.947 5 1.49 1.49 1.49 1.49
6 0.908 0.908 0.908 0.908 6 1.43 1.43 1.43 1.43
7 0.885 0.885 0.884 0.884 7 1.39 1.39 1.39 1.39
8 0.882 0.882 0.882 0.882 8 1.38 1.38 1.38 1.38



TABLE 3

MAX (R )  RESULTS

A ía A/a
L 0?25

N/a 1’.’25 2’.’SO 5’.’OO 10’.’OO N/a 1’ 25 2’.’SO 5’.’OO 10’.’OO
3 30.5 2.36 2.82 30.2 3 64.7 3.73 4.42 58.9
4 1.14 1.14 1.14 1.16 4 1.79 1.79 1.79 1.81
5 1.02 1.02 1.02 1.03 5 1.61 1.61 1.61 1.61
6 0.982 0.982 0.982 0.983 6 1.54 1.54 1.54 1.54
7 0.948 0.948 0.948 0.949 7 . 1.49 1.49 1.49 1.49
8 0.938 0.938 0.938 0.939 8 1.47 1.47 1.47 1.47

L = 0?50
N/a 1’.’25 2’.’SO 5’!OO 10’.’OO N/a 1’!25 2’.’50 5’.’OO 10’.’OO

3 2.66 3.47 3.10 2 .27  3 4.26 8.81 5.83 3.65
4 1.15 1.15 1.15 1.14 4 1.80 1.80 1.79 1.79
5 1.02 1.02 1.02 1.02 5 1.61 1.61 1.61 1.61
6 0.982 0.982 0.982 0.982 6 1.54 1.54 1.54 1.54
7 0.948 0.948 0.948 0.948 7 1.49 1.49 1.49 1.49
8 0.938 0.938 0.938 0.938 8 1.47 1.47 1.47 1.47
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TABLE 4

RATIOS OF STANDARD DEVIATIONS (L = 1?oo)

a 113 /114 113 /115 114/115

1~~25 14.6 25 .0  1.72

2 .50  33.7 57 .3  1.70

5.00  59.0  l0~ 1.7 3

10.00 16.5 34.1 2 . 0 6
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non-uniform the SAOC was used to supply positions for the

reference objects. Only a 0?75 radius field was used but

the same values of N and a as above were tried. The right

ascension and declination of the field centers were chosen

to be ~ = 0h (0h5)23h5, 6 = —85°(5°)85°. Table 5 presents

the all-sky averages for the sundry values of N and a. The

simple functional dependences noted above are still present

as is the slow decrease in accuracy beyond N = 5. The

variance of A again plays an important role in directing our

attention to the inadequacy of N = 3.

A closer examination of the individual results

shows that N = 3 can yield values of A (for a = 2’!50) in

excess of 200”. Presumably this is due to a near collinear

alignment of the reference objects in this case (i.e., I is

nearly singular). 

_
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